Architecture Overview
This document provides a comprehensive overview of the Solverhood platform architecture, including system design, technology choices, and key architectural decisions.
🏗️ System Architecture
High-Level Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Frontend │ │ API Gateway │ │ Backend │
│ (React/TS) │◄──►│ (GraphQL) │◄──►│ (Go) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │
▼ ▼
┌─────────────────┐ ┌─────────────────┐
│ PostgreSQL │ │ ClickHouse │
│ (OLTP) │ │ (OLAP) │
└─────────────────┘ └─────────────────┘
│ │
▼ ▼
┌─────────────────┐ ┌─────────────────┐
│ Redis Cache │ │ Message Queue │
│ │ │ (SQS/NATS) │
└─────────────────┘ └─────────────────┘
🎯 Design Principles
1. Microservices Architecture
- Service Independence: Each service can be developed, deployed, and scaled independently
- Technology Diversity: Different services can use the most appropriate technology stack
- Fault Isolation: Failures in one service don't cascade to others
2. Event-Driven Design
- Loose Coupling: Services communicate through events rather than direct calls
- Scalability: Easy to add new services that react to existing events
- Reliability: Event persistence ensures no data loss
3. Data-First Approach
- OLTP for Transactions: PostgreSQL handles real-time transactional data
- OLAP for Analytics: ClickHouse processes analytical queries efficiently
- Caching Strategy: Redis provides fast access to frequently accessed data
4. API-First Design
- GraphQL Interface: Single endpoint for all data queries and mutations
- Type Safety: Generated types ensure consistency across frontend and backend
- Real-time Updates: Subscriptions for live data updates
🏛️ Core Components
Frontend Layer
Technology Stack
- Framework: React 18+ with TypeScript
- State Management: Zustand (lightweight) or Redux Toolkit (complex state)
- Styling: Tailwind CSS with component libraries
- Build Tool: Vite for fast development and optimized builds
Architecture Patterns
- Component-Based: Reusable, composable UI components
- Container/Presenter: Separation of business logic and presentation
- Custom Hooks: Shared logic across components
- Error Boundaries: Graceful error handling
API Layer
GraphQL Server (GQLGen)
// Example GraphQL schema
type Query {
users: [User!]!
user(id: ID!): User
analytics: AnalyticsData
}
type Mutation {
createUser(input: CreateUserInput!): User!
updateUser(id: ID!, input: UpdateUserInput!): User!
}
type Subscription {
userUpdated(id: ID!): User!
}
Key Features
- Type Safety: Generated Go types from GraphQL schema
- Resolvers: Clean separation of business logic
- Middleware: Authentication, logging, and error handling
- Subscriptions: Real-time updates via WebSocket
Backend Services
Core Services
- User Service: Authentication, authorization, user management
- Data Service: CRUD operations, data validation
- Analytics Service: Data processing, reporting, insights
- Notification Service: Email, push notifications, messaging
- File Service: File upload, storage, CDN integration
Service Communication
// Example service interface
type UserService interface {
CreateUser(ctx context.Context, input CreateUserInput) (*User, error)
GetUser(ctx context.Context, id string) (*User, error)
UpdateUser(ctx context.Context, id string, input UpdateUserInput) (*User, error)
DeleteUser(ctx context.Context, id string) error
}
Data Layer
PostgreSQL (OLTP Database)
Purpose: Transactional data, user data, business logic Schema Design:
-- Example user table
CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
email VARCHAR(255) UNIQUE NOT NULL,
name VARCHAR(255) NOT NULL,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
-- Indexes for performance
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_created_at ON users(created_at);
ClickHouse (OLAP Database)
Purpose: Analytics, reporting, data warehousing Schema Design:
-- Example analytics table
CREATE TABLE user_events (
event_id UUID,
user_id UUID,
event_type String,
event_data JSON,
timestamp DateTime64(3),
created_at DateTime64(3) DEFAULT now64()
) ENGINE = MergeTree()
ORDER BY (timestamp, user_id, event_type);
Redis (Caching Layer)
Purpose: Session storage, API response caching, rate limiting Usage Patterns:
// Example caching implementation
func (s *UserService) GetUser(ctx context.Context, id string) (*User, error) {
// Check cache first
if user, found := s.cache.Get(id); found {
return user.(*User), nil
}
// Fetch from database
user, err := s.repo.GetByID(ctx, id)
if err != nil {
return nil, err
}
// Cache for 5 minutes
s.cache.Set(id, user, 5*time.Minute)
return user, nil
}
🔄 Data Flow
Request Flow
- Client Request: Frontend sends GraphQL query/mutation
- API Gateway: Routes request to appropriate service
- Authentication: Validates JWT token and user permissions
- Business Logic: Service processes request
- Data Access: Repository pattern for database operations
- Response: Returns structured data to client
Event Flow
- Event Generation: Service emits domain events
- Event Publishing: Events sent to message queue (NATS/SQS)
- Event Processing: Other services consume and react to events
- Data Consistency: Event sourcing for audit trail
🔒 Security Architecture
Authentication & Authorization
- JWT Tokens: Stateless authentication
- Role-Based Access Control (RBAC): Fine-grained permissions
- API Rate Limiting: Prevent abuse and ensure fair usage
- Input Validation: Comprehensive validation at all layers
Data Protection
- Encryption at Rest: Database encryption
- Encryption in Transit: TLS/SSL for all communications
- Secrets Management: Environment variables and secure storage
- Audit Logging: Complete audit trail for compliance
📊 Monitoring & Observability
Logging Strategy
- Structured Logging: JSON format for easy parsing
- Log Levels: DEBUG, INFO, WARN, ERROR, FATAL
- Centralized Logging: Grafana Loki for log aggregation
- Log Correlation: Request IDs for tracing
Metrics & Monitoring
- Application Metrics: Prometheus for metrics collection
- Infrastructure Monitoring: System health and performance
- Alerting: Proactive notification of issues
- Dashboards: Grafana for visualization
Distributed Tracing
- Request Tracing: Track requests across services
- Performance Analysis: Identify bottlenecks
- Error Tracking: Detailed error context and stack traces
🚀 Deployment Architecture
Container Strategy
# Example multi-stage Dockerfile
FROM golang:1.21-alpine AS builder
WORKDIR /app
COPY go.mod go.sum ./
RUN go mod download
COPY . .
RUN go build -o main ./cmd/server
FROM alpine:latest
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=builder /app/main .
CMD ["./main"]
Orchestration
- Docker Compose: Local development
- Kubernetes: Production deployment
- Service Mesh: Istio for advanced traffic management
- Auto-scaling: Horizontal pod autoscaling
CI/CD Pipeline
- Code Commit: Trigger automated build
- Testing: Unit, integration, and E2E tests
- Security Scan: Vulnerability scanning
- Build: Create container images
- Deploy: Rolling deployment to staging/production
🔧 Configuration Management
Environment Configuration
// Example configuration structure
type Config struct {
Server ServerConfig `pkl:"server"`
Database DatabaseConfig `pkl:"database"`
Redis RedisConfig `pkl:"redis"`
AWS AWSConfig `pkl:"aws"`
}
type ServerConfig struct {
Port int `pkl:"port"`
Host string `pkl:"host"`
Timeout int `pkl:"timeout"`
}
Feature Flags
- Runtime Configuration: Dynamic feature toggles
- A/B Testing: Gradual feature rollouts
- Environment-Specific: Different configs per environment
📈 Scalability Considerations
Horizontal Scaling
- Stateless Services: Easy horizontal scaling
- Load Balancing: Distribute traffic across instances
- Database Sharding: Partition data for performance
- CDN Integration: Global content delivery
Performance Optimization
- Caching Strategy: Multi-layer caching
- Database Optimization: Query optimization and indexing
- Connection Pooling: Efficient resource utilization
- Async Processing: Background job processing
🔄 Migration Strategy
Database Migrations
- Version Control: All schema changes tracked
- Rollback Support: Safe migration rollbacks
- Zero-Downtime: Blue-green deployments
- Data Validation: Post-migration verification
API Versioning
- Backward Compatibility: Maintain API stability
- Version Deprecation: Clear deprecation timelines
- Migration Tools: Automated migration assistance
🎯 Future Considerations
Planned Improvements
- Service Mesh: Advanced traffic management
- Event Sourcing: Complete audit trail
- CQRS: Command Query Responsibility Segregation
- GraphQL Federation: Distributed GraphQL schema
Technology Evolution
- Go 1.22+: Latest language features
- React 19: Concurrent features
- Database Evolution: New database technologies
- Cloud Native: Kubernetes-native development
This architecture provides a solid foundation for building scalable, maintainable, and high-performance applications. For detailed implementation guides, see our Development Overview.